Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Tuberculosis and Respiratory Diseases ; : 166-175, 2023.
Article in English | WPRIM | ID: wpr-977413

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide. The lower airways contain a rich and diverse microbiome, which may play a significant regulatory role in both health and disease. In COPD, the microbiome becomes perturbed, causing dysbiosis. Increased representation of members in the Proteobacteria phylum and certain members in the Firmicutes phylum has been associated with increased risk of exacerbations and mortality. Therapies such as inhaled corticosteroids and azithromycin may modulate the airway microbiome or its metabolites in patients with COPD. This paper provides an up-to-date overview of the airway microbiome and its importance in the pathophysiology of COPD and as potential therapeutic target in the future.

2.
Tuberculosis and Respiratory Diseases ; : 71-81, 2023.
Article in English | WPRIM | ID: wpr-968829

ABSTRACT

Chronic obstructive pulmonary disease (COPD) affects close to 400 million people worldwide. COPD is characterized by significant airflow limitation on spirometry. Most patients with COPD are diagnosed in their fifth or sixth decades of life. However, the disease begins much earlier. By the time airflow limitation is detected on spirometry, patients with COPD have lost close to 50% of their small airways. Thus, identification of patients with early COPD, defined as persons with preserved spirometry, who demonstrate pathologic or functional hallmarks of COPD, is essential for disease modification and ultimately disease elimination. This paper provides an up-to-date overview of the current case definition of early COPD, its importance, the novel technologies required for its detection in young adults and future directions in therapeutics for treatment.

3.
Tuberculosis and Respiratory Diseases ; : S25-S33, 2020.
Article in English | WPRIM | ID: wpr-904134

ABSTRACT

Background@#Lung inflammation plays a vital role in the pathogenesis of chronic obstructive pulmonary disease (COPD), but the characteristics of the inflammatory process remain unclear. There is growing interest in the role of granzyme B (GzmB) because CD8+ T cells can induce apoptosis of target cells by releasing GzmB, which in turn may cause tissue injury and remodeling. However, GzmB is also expressed by regulatory cells, which are able to suppress CD8+ T cell. The role of GzmB+ cells needs to be defined in COPD. @*Methods@#GzmB+ and CD8+ cells on alveolar wall of surgically resected lungs of microscopically classified 12 nonsmoking control, 12 panlobular emphysema (PLE) and 30 centrilobular emphysema (CLE) subjects were localized by immunohistochemical method. Positively stained cells on alveolar wall were counted and length of corresponding alveolar wall was measured. The results were expressed as mean number of positively stained cells per mm of alveolar wall in each subject. @*Results@#The number of GzmB+ and CD8+ cells on alveolar wall of CLE was greater than that of control or PLE subjects (p<0.05 and p<0.001, respectively). There was a positive relationship between the number of alveolar GzmB+ cells and forced expiratory volume in 1 second (FEV1) (r=0.610, p=0.003) in CLE subjects. The number of alveolar GzmB+ cells progressively decreased with decline of FEV1. @*Conclusion@#Our finding that number of alveolar GzmB+ cells was associated with FEV1 suggests that GzmB+ cells might have protective role in the progression of lung destruction and airflow limitation in CLE, which is the predominant emphysema subtype of COPD.

4.
Tuberculosis and Respiratory Diseases ; : S25-S33, 2020.
Article in English | WPRIM | ID: wpr-896430

ABSTRACT

Background@#Lung inflammation plays a vital role in the pathogenesis of chronic obstructive pulmonary disease (COPD), but the characteristics of the inflammatory process remain unclear. There is growing interest in the role of granzyme B (GzmB) because CD8+ T cells can induce apoptosis of target cells by releasing GzmB, which in turn may cause tissue injury and remodeling. However, GzmB is also expressed by regulatory cells, which are able to suppress CD8+ T cell. The role of GzmB+ cells needs to be defined in COPD. @*Methods@#GzmB+ and CD8+ cells on alveolar wall of surgically resected lungs of microscopically classified 12 nonsmoking control, 12 panlobular emphysema (PLE) and 30 centrilobular emphysema (CLE) subjects were localized by immunohistochemical method. Positively stained cells on alveolar wall were counted and length of corresponding alveolar wall was measured. The results were expressed as mean number of positively stained cells per mm of alveolar wall in each subject. @*Results@#The number of GzmB+ and CD8+ cells on alveolar wall of CLE was greater than that of control or PLE subjects (p<0.05 and p<0.001, respectively). There was a positive relationship between the number of alveolar GzmB+ cells and forced expiratory volume in 1 second (FEV1) (r=0.610, p=0.003) in CLE subjects. The number of alveolar GzmB+ cells progressively decreased with decline of FEV1. @*Conclusion@#Our finding that number of alveolar GzmB+ cells was associated with FEV1 suggests that GzmB+ cells might have protective role in the progression of lung destruction and airflow limitation in CLE, which is the predominant emphysema subtype of COPD.

5.
Tuberculosis and Respiratory Diseases ; : 11-20, 2017.
Article in English | WPRIM | ID: wpr-124438

ABSTRACT

Approximately one in four patients with chronic obstructive pulmonary disease (COPD) have asthmatic features consisting of wheezing, airway hyper-responsiveness or atopy. The Global initiative for Asthma/Globalinitiative for chronic Obstructive Lung Disease committee recently labelled these patients as having asthma-COPD overlap syndrome or ACOS. ACOS also encompasses patients with asthma, ≥40 years of age, who have been cigarette smokers (more than 5–10 pack years) or have had significant biomass exposure, and demonstrate persistent airflow limitation defined as a post-bronchodilator forced expiratory volume in 1 second (FEV₁)/forced vital capacity of <70%. Data over the past 30 years indicate that patients with ACOS have greater burden of symptoms including dyspnea and cough and show higher risk of COPD exacerbations and hospitalizations than those with pure COPD or pure asthma. Patients with ACOS also have increased risk of rapid FEV₁ decline and COPD mortality. Paradoxically, experimental evidence to support therapeutic decisions in ACOS patients is lacking because traditionally, patients with ACOS have been systematically excluded from therapeutic COPD and asthma trials to maintain homogeneity of the study population. In this study, we summarize the current understanding of ACOS, focusing on definitions, epidemiology and patient prognosis.


Subject(s)
Humans , Asthma , Biomass , Cough , Dyspnea , Epidemiology , Forced Expiratory Volume , Hospitalization , Mortality , Prognosis , Pulmonary Disease, Chronic Obstructive , Respiratory Hypersensitivity , Respiratory Sounds , Tobacco Products , Vital Capacity
SELECTION OF CITATIONS
SEARCH DETAIL